
Web Services
Lecture 9 (A)

+ Rest (Intermediate) and SOAP

§ You will be required to parse and process XML
AND JSON documents

§ Full details of the requirements are explained in
the assignment question

§ Each student should submit his/her assignment
to the LMS according to the instructions in the
assignment question sheet

§ AND also has an identical version residing under
his/her web home directory on Eris server. No
change is permitted to this version after
submission!

Assignment Two

Learning Objectives

n Learn about the concept of Web Services,
and why it is an important development in
Internet technologies

n Learn about the basic set-up for Web
Services

3

4

n In the scheme of what we are doing in this
unit:
n We are studying how to use XML / JSON as

important Internet technologies for solutions in
different areas

n It is likely that any work in this industry will
involve the use of Web Services

n This lecture is aimed at learning about the
concepts

Learning Objectives

n What are Web Services?
n Components of Web Services
n The Role of XML

5

Lecture Outline

n "Today, the principal use of the World Wide Web is
for interactive access to documents and
applications. In almost all cases, such access is by
human users, typically working through Web
browsers, audio players, or other interactive front-
end systems. The Web can grow significantly in
power and scope if it is extended to support
communication between applications from one
program to another."

W3C XML Protocol Working Group Charter.

6

From Manual to Automated

7

What is a "Web Service"?

n "A web service is any service that is available
over the Internet, uses a standardized XML
messaging system, and is not tied to any one
operating system or programming language."

8

What is a "Web Service"?

n Note, the previous definition states "a
standardized XML messaging system"
n XML is not the only language used in

standardized messaging systems
n Nowadays, JSON is also commonly used in

standardized messaging systems

9

n The options for a "messaging system" are:
n XML-RPC (Remote Procedure Call)
n SOAP
n REST

n We will talk more about SOAP shortly, and
cover REST next week

What is a "Web Service"?

10

Difference from "Normal" Web

n What is the difference between a Web
Service and the outdated "normal" web
applications?
n Eg: dynamic PHP web-sites, shopping carts,

etc.
n Answer: "normal" web applications are NOT

n Self-Describing
n Discoverable

11

n For example, with the "normal" web
application
n You can not get your web client to go and find

available online applications that do a
particular thing (eg: return weather data in
London, convert between currencies, …)

n When you have a new application, no existing
programs will be able to use it unless you
explicitly tell other programmers about it

Difference from "Normal" Web

12

n When an application changes its result format,
other programs making use of that application
cannot automatically detect what those
changes are

Difference from "Normal" Web

13

Towards the Semantic Web

n Development in Web Technologies required
a move from
n Human-centric …
n To Application-centric …
n To Automated Web

n Therefore, we have moved toward the
concept of the "Semantic Web"

The Semantic Web

n The Semantic Web is W3C’s vision of the
Web where:
n “it becomes a place where data can be shared

and processed by automated tools as well as
by people.”

n “tomorrow's programs must be able to share
and process data even when these programs
have been designed totally independently.”

14

The Semantic Web

n “the idea is to have data on the web defined
and linked in a way that it can be used by
machines not just for display purposes, but for
automation, integration and re-use of data
across various applications.”

n http://www.w3.org/2001/sw/

15

16

Distributed Object Technologies

n There have been past efforts in providing
program-level object exchange:
n OMG’s CORBA/IIOP (www.corba.org/)
n Microsoft’s DCOM

(www.microsoft.com/com/tech/dcom.asp)
n Java RMI (java.sun.com/rmi)

17

n Common Object Request Broker
Architecture / Internet Inter-Orb Protocol
(CORBA/IIOP) is a standard defined by the
Object Management Group (OMG)
§ CORBA is a design specification for an Object

Request Broker (ORB)
§ ORB provides the mechanism required for

distributed objects to communicate with one
another, locally or remotely, written in different
languages, or in different locations on a
network

Distributed Object Technologies

18

§ IIOP (Internet Inter-ORB Protocol) is a protocol
that makes it possible for distributed programs
written in different programming languages to
communicate over the Internet

§ IIOP is a critical part of a strategic industry
standard, the Common Object Request Broker
Architecture (CORBA)

Distributed Object Technologies

19

n Distributed Component Object Model
(DCOM) is a proprietary Microsoft
technology for communication among
software components distributed across
networked computers

Distributed Object Technologies

20

n The Java Remote Method Invocation (Java
RMI) is a Java API that performs remote
method invocation with support for direct
transfer of serialized Java classes and
distributed garbage collection
n It is the object-oriented equivalent of Remote

Procedure Calls (RPC)

Distributed Object Technologies

21

n The problem is that all of these technologies
suffered from:
n Complex set-up and object invocation
n Platform and language dependence
n Lack of universal acceptance
n Lack of extensibility to different problem areas

Distributed Object Technologies

22

A Web Service

n As mentioned previously, a Web service (in
very broad terms) is a method of
communication between two applications or
electronic devices over the World Wide
Web (WWW)

n Nowadays, web services use a messaging
system of two kinds:
n Simple Object Access Protocol (SOAP) and
n REpresentational State Transfer (REST)

23

A Web Service: SOAP

n SOAP defines a standard set of rules or
communication protocol specifications for
XML-based message exchange

n SOAP can use different transport protocols,
such as HTTP and SMTP

24

n The standard protocol HTTP makes it
easier for the SOAP model to tunnel across
firewalls and proxies without any
modifications to the SOAP protocol

n SOAP can sometimes be slower than
middleware technologies like CORBA due
to its verbose XML format

A Web Service: SOAP

25

A Web Service: REST

n REST describes a set of architectural
principles by which data can be transmitted
over a standardized interface (such as
HTTP)

n REST does not contain an additional
messaging layer and focuses on design
rules for creating stateless services

26

n A client can access a resource using the
unique URI and a representation of the
resource is returned

n With each new resource representation, the
client is said to transfer state

A Web Service: REST

27

n While accessing RESTful resources with
HTTP protocol, the URL of the resource
serves as the resource identifier and GET,
PUT, DELETE, POST and HEAD are the
standard HTTP operations to be performed
on that resource

n We will cover RESTful Web Services in
more detail next week

A Web Service: REST

28

Support for Web Services
n Tools for programming and supporting Web

Services are appearing under all platforms
and programming languages

n Currently:
n SOAP, WSDL and UDDI are still in use today
n Development has moved away from XML-RPC

and SOAP towards REST
n REST has become increasingly more wide-

spread
n However, it is still important to understand

XML-based Web Services

29

Importance of XML

n The use of XML is an essential part of
building SOAP-based Web Services

n The concepts of self-description and
discovery is not easily implementable
without wide support for XML

30Advantages of XML

n Think about what XML offers:
n Clients and servers know unambiguously

where to retrieve the needed data
n Clients and servers can determine if they are

communicating the same information by
looking at what namespace they are using

n It can be determined unambiguously where
the location of the service is

n What goes into requests and responses can
be extended in the future, and those changes
can be detected automatically by looking at
the XML and Schema

n There is so much existing support for
processing XML documents in different
platforms and programming languages

n One can integrate the content of the
messages with other XML content from other
applications or domains

31Advantages of XML

Security Problems

n Security for Web Services still needs a lot
of attention and development
n For example, most SOAP services binds to

(i.e., use) HTTP for transport
n That means a whole set of behaviours can be

invoked that firewalls cannot currently
distinguish (and appropriately block) from
normal web server-client traffic

32

33

Motivations for Web Services

§ Why not stick with “normal” programs as a
basis for providing services?

§ Answers - without Web Services:
n Programs are not accessible over the Internet
n Programs must be developed for a particular

Operating System and particular languages
n There is no program-to-program

communication

34

§ Why not stick with familiar HTTP / HTML /
CGI as a basis for providing services?

§ Answers - using such languages, there is:
n No program-to-program communication
n Services are not self-describing
n Services are not discoverable
n Services are not easily integrated

Motivations for Web Services

35

Web Services at W3C

n W3C’s work in Web Service standards has
in the past been concentrated on:
n XML Protocol

n Defining the various layers of Web
Services, and how they fit together

n Refinement of SOAP
n Security extensions, Attachments, etc.

36

n W3C’s work in Web Services standards has
also concentrated on:
n WSDL

n From Working Draft to full Recommendation
n Web Service Choreography

n Defining how to describe the interactions
between service requester and provider

Web Services at W3C

37

Web Service Developers

n Developers of Web Services were split
mainly into two camps:
n J2EE
n Microsoft .NET

n However, organizations hedged their bets
on both camps

38

Other Environments

n There has also been support for Web
Services development under various
applications platforms such as Oracle
databases, IBM WebSphere, etc.

39

Ideal versus Reality

n The ideal of Web Services is to be platform
and environment independent
n It shouldn't matter how you developed the

services, they will be able to communicate with
each other once they are deployed

n J2EE and Microsoft .NET, as well as all other
development environments, would implement
standard SOAP, WSDL, UDDI and XML

40

n However, the reality is that the development
platform is critical due to:
n Cost of tools
n Ease and cost of development
n Ease and cost of deployment
n Skill set of available personnel

n So the ideal situation is not easily achieved
in reality

Ideal versus Reality

41

Closing the Gap

n The difference in benefits between the
J2EE and .NET is no longer as obvious as
it was a few years ago
n Complex interplay of many factors
n Which one is better in total cost of

development and deployment is disputable

42

n In a crude way, the early Web had three
components in the form of:
n Clients
n Servers
n Search Engines

n The problem was that the CONTENTS
between clients, servers, and search
engines were not precisely defined

n Thus that situation was not good enough for
automated Web

Components of A Web Service

43

n The more recent Web Service infrastructure
consists of:
n Providers
n Requesters
n Registries

n In some ways these relate to clients,
servers, and search engines (respectively)

Components of A Web Service

44

Web Service Protocol Stack

Discovery: UDDI – Universal Description Discovery
and Integration

Description: WSDL – Web Service Definition Language

Messaging: XML-RPC (Remote Procedure Call)
SOAP (Simple Object Access Protocol)
REST (REpresentational State Transfer)

Transport: HTTP – Hypertext Transfer Protocol
SMTP – Simple Mail Transfer Protocol

45Example Web Service
Infrastructure

Service
Requestor

Service
Provider

Service
Registry

Discover (in UDDI
location of WSDL)

Describe (WSDL)

Publish (in UDDI
location of WSDL)

Invoke (SOAP or REST)

46Example Web Service
Infrastructure

n The concept of the communication is:
n The service provider creates a WSDL description for a

new (SOAP or REST) service
n The service provider publishes the location of the WSDL

description (i.e., the service providers location) in a
UDDI registry

n Service requestors find out about the existence of the
service in the UDDI registry (i.e., they search the UDDI
for web services of interest to them)

n The service requestors use the location retrieved from
the UDDI to get the WSDL description from the service
provider; thus they discover the web service details

n The requestors connect to the service provider using
SOAP or REST and then use the service

Example WSDL for a
Weather Service

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WeatherService"

targetNamespace="http://www.ecerami.com/wsdl/WeatherService.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.ecerami.com/wsdl/WeatherService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="getWeatherRequest">
<part name="zipcode" type="xsd:string"/>

</message>
<message name="getWeatherResponse">

<part name="temperature" type="xsd:int"/>
</message>
...
<service name="Weather_Service">

<documentation>WSDL File for Weather Service</documentation>
<port binding="tns:Weather_Binding" name="Weather_Port">

<soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
</port>

</service>
</definitions>

Example from section 1.4 in Web Service Essentials
by Ethan Cerami, O'Reilly, 2002

47

48

Example SOAP Request

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getWeatherRequest

xmlns:ns1="urn:examples:weatherservice"
SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-

encoding/">
<zipcode xsi:type="xsd:string">10016</zipcode>

</ns1:getWeatherRequest>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Asking for
weather data…

… for zipcode 10016

Example from section 1.3.2 in
Web Service Essentials by
Ethan Cerami, O'Reilly, 2002

49

Example SOAP Response

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>
<ns1:getWeatherResponse

xmlns:ns1="urn:examples:weatherservice"
SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-

encoding/">
<temperature xsi:type="xsd:int">65</temperature>

</ns1:getWeatherResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Returning the
response…

… with the weather data

Example from section 1.3.2 in
Web Service Essentials by
Ethan Cerami, O'Reilly, 2002

50

References

n Current developments in standards and
protocols
n http://www.w3.org/2002/ws/

n J2EE
n http://java.sun.com/j2ee/

n Microsoft's .NET
n http://www.microsoft.com/net/
n http://www.microsoft.com/NET/Basics.aspx

SOAP, WSDL,
and UDDI
Lecture 9 (B)

2

Learning Objectives

n Learn more details of the three components
of XML Web Services

§ Clarify understanding of SOAP messages by
looking at an example SOAP service

§ Learn the basics of using the Perl module
SOAP::Lite to implement a SOAP service

3

Lecture Outline

n Components of Web Services:
n SOAP
n WSDL
n UDDI

n What is in a SOAP Message?
n A demonstration of a simple SOAP service

4

Components of Web Services

n In an XML-based Web Service, we
n Describe a service using the Web Services

Description Language (WSDL)
n Define a way to publish and discover information

about Web services using Universal Description,
Discovery and Integration (UDDI)

n Invoke the service using Simple Object Access
Protocol (SOAP)

5

Web Service Component: SOAP

n Simple Object Access Protocol (SOAP) is an
XML-based messaging and remote procedure
call specification that enables the exchange of
information among distributed systems

n SOAP is a public standard defined by W3C:
n http://www.w3.org/TR/soap
n http://www.w3.org/TR/soap12

6

7

Web Service Component: SOAP

n SOAP is a communication protocol designed to
communicate via the Internet

n SOAP can extend HTTP for XML messaging
n SOAP provides data transport for Web services
n SOAP can exchange complete documents or

call a remote procedure

8

n SOAP can be used for broadcasting a
message

n SOAP is platform-independent and language-
independent

n SOAP is the XML way of defining what
information is sent and how

n SOAP enables client applications to easily
connect to remote services and invoke remote
methods

Web Service Component: SOAP

9

n Although SOAP can be used in a variety of
messaging systems and can be delivered via a
variety of transport protocols, the initial focus of
SOAP was remote procedure calls transported via
HTTP

n Frameworks including CORBA, DCOM, and Java
RMI provide similar functionality to SOAP, but SOAP
messages are written entirely in XML and are
therefore platform- and language-independent

Web Service Component: SOAP

10

SOAP Communication

n In SOAP communication, the parties involved
are called SOAP nodes

n Nodes send SOAP messages to each other, in
a one-way transmission from a sender to a
receiver

n There may be intermediaries between the
sender and the receiver, because transmission
occurs over the Internet

11

n SOAP communication combines the following
underlying message transmissions to
implement complex interactions, from:
n Single message with no response, to …
n Single request-response exchange, to …
n Multiple back-and-forth "conversations"

SOAP Communication

12

n SOAP 1.1 defined 4 explicit client / server
request / response-type interactions

n SOAP 1.2 moves away from this terminology,
to more general message exchange models of
any type

SOAP Communication

13

Single Request-Response

n Because a lot of SOAP services depend on
HTTP, we see a lot of these services following
the simple single request-response exchange

n Our exercises for lab 10 involve only services of
this type
n A client asks for something – the server sends

something back - end of exchange
n Thus, we use SOAP::Lite in our tutorial scripts; this

is supported by SOAP version 1.1

14

Example SOAP Service

n Let's look at a hypothetical (and very simplistic)
service that allows us to query information
about a University unit
n The requester sends a unit code, and the provider

responds with the unit title

n What would requests and responses from a
client to a server in this service look like?

15Example SOAP Request
(in essence)

<Envelope>
<Body>
<getUnitInfo>
<unit_code>ICT375</unit_code>

</getUnitInfo>
</Body>

</Envelope>

16

Example SOAP Request

<?xml version='1.0' encoding='UTF-8'?>

<soap:Envelope

xmlns:soap=http://www.w3.org/2001/09/soap-envelope

soap:soapenc=" http://www.w3.org/2001/09/soap-encoding">

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<getUnitInfo xmlns="urn:examples:unitinfoservice">

<unit_code xsi:type="xsd:string">ICT375</unit_code>

</getUnitInfo>

</soap:Body>

</soap:Envelope>

17Example SOAP Response
(in essence)

<Envelope>
<Body>
<getUnitInfoResponse>
<unit_name>

Advanced Web Programming
</unit_name>

</getUnitInfoResponse>
</Body>

</Envelope>

18

Example SOAP Response
<?xml version='1.0' encoding='UTF-8'?>

<soap:Envelope

xmlns:soap=http://www.w3.org/2001/09/soap-envelope

soap:soapenc="http://www.w3.org/2001/09/soap-encoding">

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<getUnitInfoResponse

xmlns="urn:examples:unitinfoservice">

<unit_name xsi:type="xsd:string">

Advanced Web Programming

</unit_name>

</getUnitInfoResponse>

</soap:Body>

</soap:Envelope>

19Binding to Different
Transport Protocols

n SOAP does not define how the messages are
to be transported

n SOAP must bind to certain messaging
protocols (eg: HTTP, SMTP) to transport the
messages

n It is up to the implementer of the SOAP service
to decide which protocol can best support their
service interaction

20

Example: SOAP over HTTP

UnitInfo Service
Requestor

UnitInfo Service
Provider

HTTP request (containing SOAP
message requesting unit information)

HTTP response (containing SOAP
message with unit information)

§ Two nodes sending request / response
information to each other

21Example SOAP Request
In HTTP Message

POST /ws/UnitInfoService HTTP/1.1
Host: 134.115.64.2
Content-type: text/xml
Content-length: 300
SOAPAction: urn:examples:unitinfoservice#getUnitInfo

<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope

xmlns:soap=http://www.w3.org/2001/09/soap-envelope
soap:soapenc="http://www.w3.org/2001/09/soap-encoding">
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>

<getUnitInfo xmlns="urn:examples:unitinfoservice"
<unit_code xsi:type="xsd:string">ICT375</unit_code>

</getUnitInfo>
</soap:Body>

</soap:Envelope>

HTTP
Message
Headers

HTTP Message
Body (SOAP
request from

previous example)

22

Binding to Other Protocols

n Although binding to HTTP is the most
prevalent model, we can bind to other
protocols as well
n For example, there is a W3C Note describing

SOAP binding over Email (such as SMTP)

n Sometimes it may be appropriate to bind to a
protocol other than HTTP
n For example, we may not want any response to

the message we send to the receiver

23

Example: SOAP over SMTP

UnitInfo Node UnitInfo Node

SMTP message (containing SOAP
message with updated unit information)

§ One node sending update information to
another node

24

Web Service Component: WSDL

n Web Service Description Language (WSDL) is
an XML-based language to describe the
operations of a web service

n Web Service servers can publish WSDL
documents to enable clients to read and
determine how to use the service

25Example
WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="UnitInfoService"

targetNamespace="http://www.pieinthesky.edu.au/UnitInfo.wsdl"
xmlns:tns="http://www.pieinthesky.edu.au/UnitInfo.wsdl"

…>

<message name="getUnitInfo">
<part name="unit_code" type="xsd:string" />

</message>
<message name="getUnitInfoResponse">

<part name="unit_name" type="xsd:string" />
</message>

<portType name="UnitInfo_PortType">
<operation name="getUnitInfo">

<input message="tns:getUnitInfo" />
<output message="tns:getUnitInfoResponse" />

</operation>
</portType>

<service name="UnitInfo_Service">
<documentation>WSDL File for Unit Info Service</documentation>
<port binding="tns:UnitInfo_Binding" name="UnitInfo_Port">

<soap:address location="http://localhost:8080/soap/servlet/rpcrouter" />
</port>

</service>
…

</definitions>

Input/output
description

Service location
description

26

Web Service Component: UDDI

n Universal Description, Discovery and
Integration (UDDI) is a platform-independent,
open framework for describing and
discovering businesses, and integrating
business services

n Web Service companies publish themselves
in UDDI registries (announcing they have
Web Services to be discovered)

27

§ Web Service clients (requestors) query the
company to determine services

§ Clients retrieve and read the WSDL document
for the appropriate service (from the provider)

§ Clients then invoke the service according to
how it is described in the WSDL document

Web Service Component: UDDI

28

Source: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwebservicesinfrastructure.asp

Web Service Example

29UDDI Registries

n There are UDDI registries maintained by
companies like Microsoft and IBM

n UDDI registries are loosely coupled after the
DNS system
n Each registry should synchronize their data with

other registries
n Like the DNS registries, UDDI registries do not

contain the service information themselves
n They provide information on where and how to find

and invoke the services

30

Example: A Simple SOAP Service

n A demonstration of the Echo service you will be
implementing in tutorial 10

echoString client Echo Service

"Hello"

"Hello"

31

Simplified Request

<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body>
<echoString>

<inputString type="string">Hello</inputString>
<echoString>

</Body>
</Envelope>

32

POST http://ceto.murdoch.edu.au:8888 HTTP/1.1
Accept: application/soap
Content-Length: 478
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://soapinterop.org/"

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Body>

<echoString xmlns="http://soapinterop.org/">
<inputString xsi:type="xsd:string">hello</inputString>

</echoString>
</soap:Body>

</soap:Envelope>

Request From echoString Client
To Echo Server

33

<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body>
<echoStringResponse>
<return type="string">Hello</return>

</echoStringResponse>
</Body>

</Envelope>

Simplified Response

34

HTTP/1.1 200 OK
Server: libwww-perl-daemon/6.01
Content-Length: 484
Content-Type: text/xml; charset=utf-8
Client-Date: Wed, 28 Apr 2021 16:06:03 GMT
Client-Peer: 134.115.4.185:8888
Client-Response-Num: 1
SOAPServer: SOAP::Lite/Perl/1.27

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Body>

<echoStringResponse xmlns="http://soapinterop.org/">
<return xsi:type="xsd:string">hello</return>

</echoStringResponse>
</soap:Body>

</soap:Envelope>

Response From Echo Server
To echoString Client

35

SOAP Envelope

§ The SOAP <Envelope> element consist of two
parts:
n <Header> - optional

n Contains control information – eg: to be used by
intermediaries between sender and receiver

n <Body> - mandatory
n Contains content used for the service

36

SOAP Faults

n All generated errors are reported in the
<Fault> element
n The <Fault> element in the following Echo

service example is one for SOAP v1.1

37

Simplified Fault
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body>
<Fault>
<faultcode type="string">

soap:Client
</faultcode>
<faultstring type="string">

SOAPAction should be "http://soapinterop.org/"
</faultstring>
<faultactor type="string">

http://ceto.murdoch.edu.au:12345/
</faultactor>

</Fault>
</Body>

</Envelope>

38HTTP/1.1 500 Internal Server Error
Date: Wed, 28 Apr 2021 17:23:39 GMT
Server: libwww-perl-daemon/6.01
Content-Length: 542
Content-Type: text/xml; charset=utf-8
Client-Date: Wed, 28 Apr 2021 17:23:39 GMT
Client-Peer: 134.115.4.185:8888
Client-Response-Num: 1
SOAPServer: SOAP::Lite/Perl/1.27

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope

soap:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/
xmlns:soapenc=http://schemas.xmlsoap.org/soap/encoding/
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Body>

<soap:Fault>
<faultcode>soap:Client</faultcode>
<faultstring>

SOAPAction should be http://soapinterop.org/
</faultstring>
<faultactor>http://ceto:8888/</faultactor>

</soap:Fault>
</soap:Body>

</soap:Envelope>

39Echo Server Script

#!/usr/bin/perl -w
use strict;
use SOAP::Lite;
use SOAP::Transport::HTTP;

my $port = shift; # port supplied on command line when script is invoked
my $soapServer = SOAP::Transport::HTTP::Daemon

-> new (LocalPort => $port)
-> dispatch_to (qw(echoString)) # dispatch to 'echoString'
-> on_action (sub {

die "SOAPAction should be \"http://soapinterop.org/\"\n"
unless $_[0] eq '"http://soapinterop.org/"';});

print "Starting SOAP server on URL: ".$soapServer->url."\n";
$soapServer->handle;

sub echoString {
Receives a string and echoes it back
my ($class, $inputString) = @_; # @_ catches parameters
die "no input provided\n" if !$inputString;
return SOAP::Data->name('return')->type('string')

->value($inputString);
}

40echoString Client Script
#!/usr/bin/perl -w
use strict;
use SOAP::Lite;
my $url = shift; # url supplied on command line when script is invoked
$inputString="Hello";
$inputSoapParam = SOAP::Data

-> name ('inputString')
-> type ('string')
-> value ($inputString);

$response = SOAP::Lite
-> proxy($url)
-> uri('http://soapinterop.org/')
-> on_action(sub { '"http://soapinterop.org/"' })
-> echoString ($inputSoapParam); # request 'echoString' service

if ($response->fault) {
print "SOAP Fault received.\n\n" ;
print "Fault Code : ".$response->faultcode."\n";
print "Fault String : ".$response->faultstring."\n";
print "Fault Actor : ".$response->faultactor."\n";
die;

}
print "Sent '".$inputString."', received '".$response->result."'\n";

41

References

n Online Book Chapter: Web Services
Essentials by Ethan Cerami, O'Reilly, 2002 -
Chapter 1

n Echo server and client code described in the
Unit Reader chapter 6

n SOAP::Lite for Perl:
n http://guide.soaplite.com/

n References to SOAP at W3C
n http://www.w3.org/2002/ws/

